
Fusing Quantitative Requirements Analysis with
Model-based Systems Engineering

Steven L. Cornford Martin S. Feather Vance A. Heron J. Steven Jenkins
Jet Propulsion Laboratory, California Institute of Technology

{Martin.S.Feather, Steven.L.Cornford, Vance.A.Heron, J.S.Jenkins}@jpl.nasa.gov

Abstract

A vision is presented for fusing quantitative

requirements analysis with model-based systems
engineering. This vision draws upon and combines
emergent themes in the engineering milieu.
“Requirements engineering” provides means to
explicitly represent requirements (both functional and
non-functional) as constraints and preferences on
acceptable solutions, and emphasizes early-lifecycle
review, analysis and verification of design and
development plans. “Design by shopping” emphasizes
revealing the space of options available from which to
choose (without presuming that all selection criteria
have previously been elicited), and provides means to
make understandable the range of choices and their
ramifications. “Model-based engineering” emphasizes
the goal of utilizing a formal representation of all
aspects of system design, from development through
operations, and provides powerful tool suites that
support the practical application of these principles.

A first step prototype towards this vision is
described, embodying the key capabilities.
Illustrations, implications, further challenges and
opportunities are outlined.

1. Introduction

This paper is structured as follows: we begin by
presenting the existing ideas we draw upon, taken from
three mainstream areas, and thereafter introduce our
visionary approach towards their fusion (Section 2).
We have confirmed the soundness of our vision by
taking a significant first step – construction of a
prototype that realizes the essential aspects of our
vision, and application of this prototype on a
representative example. This served to clarify our own
understanding of the vision, yield a demonstration to
show to our sponsors and hoped-for customers, and
help us identify future problems and opportunities. Our
prototype is outlined in Section 3. Succinct illustrations

of its operation, highlighting its novel capabilities, are
shown in Section 4. The revolutionary implications if
this vision were adopted are discussed in Section 5,
along with some challenges and opportunities that lie
in its advancement. Finally the references in Section 6,
although constrained in length, are notable for drawing
from a diversity of sources. This diversity reflects the
fact that attainment of our vision will require a fusion
of ideas taken from disparate areas of engineering.

2. A fusion of ideas and approaches

2.1. Requirements engineering

Requirements engineering emphasizes the explicit
representation and treatment of requirements. Herein
the kinds of requirements we explicitly deal with span
both functional and non-functional ones, and include
constraints (“the system shall...”) and preferences (“the
more ... the better...”). We also draw from requirements
engineering the emphasis on early-lifecycle activities.
Proponents of the various kinds of “-ilities” (e.g.,
affordability, reliability) often claim that these cannot
readily be built into a design as an afterthought. Rather,
these “-ilities” should be used from the very beginning
to guide the selection and refinement of designs. This
requires that it be possible to gauge (by whatever early-
phase process is applied, e.g., review, inspection,
analysis, formal verification, simulation) the degree to
which a design fulfils these “-ilities”.

2.2. Design by shopping

“Design by shopping” has its emphasis on revealing
the space of options available from which to choose,
without presuming that all selection criteria have
previously been elicited. Its origins as an approach that
hinges on “a-posteriori articulation of preference” [1]
are discussed in [2], where the following statement is
made on its viability as a method:

mfeather
Text Box
In Proceedings of the 14th IEEE International Requirements Engineering Conference,Minneapolis / St. Paul, Minnesota, Sept. 2006. IEEE Computer Society, pp. 279-284.

mfeather
Text Box

“For the design by shopping paradigm to take hold,
research is needed in two areas. First, efficient
methods for obtaining rich Pareto sets are needed.
Second, interactive graphical computer tools are
needed to assist decision makers in the shopping
process.”

Progress in both of these areas has since occurred
For example, [3] employs a variety of rich
visualization capabilities to present the option space of
designs, and couples these with the design models
from which the options are calculated

2.3. Model-based engineering

“Model-based engineering” emphasizes a formal

representation of all aspects of system design, from
development through operations. In the software
engineering milieu, UML represents a consensus on
the means to represent many aspects of the system to
be developed. In systems engineering, a similar
movement is underway (e.g., the SysML Partners
“Systems modeling Language (SysML)”), with the
aspiration of encompassing not just aspects of the
system to be developed, but also of the development
process itself (e.g., taking into account cost, schedule
and work allocations). Vendors offer powerful tool
suites that support the practical application of these
principles, for example Vitech Corporation’s CORE®
product family of engineering development tools, or
3SL’s Cradle® model based systems engineering
environment.

2.4. Our vision – a fusion of all three

Our vision it to fuse key elements from all three of

the above. We employ model based engineering as the
linchpin of our approach because it spans both
development aspects (cost, schedule, work breakdown)
and design aspects (system decomposition, functional
behavior, measures of performance). This wide scope
is key to supporting reasoning about the “-ilities”.
Furthermore, model based engineering is rapidly
gaining acceptance, thus we will not have to persuade
engineers to adopt an unfamiliar toolset.

We augment model-based engineering in two key
ways: we reduce the effort it takes to construct models
and variations on them, and we quantitatively couple
the models’ development and design aspects to reflect
the ways that development choices affect the
operational qualities of the resulting designs. We
achieve the effort-reduction by encoding “reference”
design practices and knowledge in our domain as
templates, and use these to expand problem-specific
design descriptions. We achieve the quantitative

coupling by interposing a risk-centric model that links
development steps to their effects on risks, and risks to
their effects on the expected operational behaviors of
the system being designed. For example, choosing to
construct the system out of higher quality components
reduces the risks of certain kinds of system failures.

Both augmentations are essential to our vision.
Motivated by the “design by shopping” paradigm, we
wish to reveal a tradespace of alternatives. In our
vision, however, generation of that tradespace is to
encompass design and development choices. Work in
the “design by shopping” field tends to have a design-
centric focus (e.g., in the spacecraft design study
reported in [3] the design variables were things like
vehicle mass, and thickness of material). How a design
is to be developed is rarely considered, so relatively
few development concerns (usually only cost) can be
taken into consideration. In order for our vision to
function, we need the aforementioned coupling of
development steps to their operational (run-time)
implications. Furthermore, for our vision to be viable,
generation of the tradespace should not require a level
of effort disproportionately greater than it would take
to construct a single model. Some form of automated
generation of model variations is essential.

Requirements engineering aspects are brought to the
fore in this vision: functional and non-functional
requirements and preferences of all kinds can be
understood in the context of the aforementioned
tradespaces. For example, the consequences on each of
the “-ilities” of tightening (or loosening) a scheduling
requirement can be revealed. There is no longer the
present-day gulf between reasoning about the design,
and reasoning about the development by which the
design is realized.

3. An approach to realization of our vision

In this section we outline the prototype we
constructed to conduct an initial foray towards our
vision and demonstrate its soundness. Our prototype
takes the form of an assemblage of several capabilities,
applied in the following order:

3.1. “Quantum” model creation

We begin with a standard systems engineering tool;

in our experiments to date we used Vitech
Corporation’s CORE® for this purpose. Using this we
represent two kinds of systems engineering
information:
• Specific information on the design problem at

hand. The operational scenarios it is to exhibit, the
functions to be exercised in those scenarios, and

the decomposition of the system into subsystems,
and subsystems into components.

• Reference information on the capabilities of
standard subsystems and components, and on
standard processes to be followed. Example
capabilities are the functionality and failure modes
of standard subsystems. Example processes are the
sequence of design, development or acquisition,
integration, and testing steps applied to
development of any major subsystem, interspersed
by various reviews, inspections and analyses.

A key aspect of our approach is that both kinds of
information can include choices – design choices (e.g.,
choice of parts and materials) and development choices
(e.g., optional inclusion of additional review and
testing steps).

We developed code to automatically combine the
information from these two sources. Roughly speaking,
the problem-specific information is used as “seed”
data, and the reference information is interpreted as
templates, used to expand the seed information.

The net result is a systems engineering model that,
as is common for such models, spans development
through operation. Unusual, however, is the inclusion
in the model of choices (among development
alternatives and options). These will have ramifications
on the later steps in the development and on the
likelihoods of the various operational scenarios. At this
point therefore our systems engineering model is in an
indeterminate “quantum” state embodying all possible
consistent selections among those choices.
Additionally, some of the ramifications of the model
(e.g., how long it would take and how much it would
cost to develop a design characterized by a set of
selections) have yet to be calculated.

To evaluate and explore those ramifications, and to
help select from among them, we automatically
transfer the information from the systems engineering
tool to our risk-based decision support tool, described
next.

3.2. Risk-based decision support tool

We use our home-grown risk-based decision

support tool DDP [4] to perform the evaluations of
various development and design alternatives and
options, and to help guide the users in selecting among
those alternatives.

For a specific selection among the development and
design alternatives and options, we use the risk-based
model encoded in DDP to calculate the measures of
interest (the “evaluate” part of a typical “generate-
evaluate-decide” cycle). Our approach encompasses

both measures of the operation of the (candidate)
system, and of the development of that system.

The measures of operation are usually system
dependent, based on what the system is intended to
achieve; classical requirements engineering methods
have a role here in ascertaining what these are. For
safety-critical systems, there is often a clear distinction
between acceptable and unacceptable behaviors (those
that lead to injury or death). In such situations, the
focus is often on estimation of the likelihoods of these
unacceptable outcomes. For other systems, or within
the envelope of safe behaviors, there are often
graduated measures of success, e.g., “how much
science data will this spacecraft yield?” These are
typically problem-specific.

The measures of development include ones of
almost universal concern (“how much will it cost to
develop the system?” “how long will it take?”),
refinements of these (e.g., “how evenly is the workload
spread over time?”), and perhaps some problem-
specific aspects (e.g., “how much of a lead system
architect’s time will be needed?”).

The systems engineering tool is used to calculate for
each scenario its measures of success, and passes this
information over to DDP. Combining these with its
calculation of scenario likelihoods, DDP can assess the
expected amounts of measures of success (in principle
we could calculate probability distributions). The fine
details of how we arrange the information transfer
from the systems engineering tool to DDP so as to
make this possible are expounded in [5]. Underpinning
it is a probabilistic treatment of uncertainty somewhat
akin to that in [6] and [7].

It is important to note that in our integrated
approach we calculate implications of development-
time decisions on both the subsequent steps of the
development itself, and on the reliability of the design
that results. For example, a development-time decision
to use high-quality (rather than low-quality) parts
decreases the likelihood that subsequent testing will
reveal the need to replace faulty parts, and will
improve the reliability of the design. Likewise,
adoption of an early-phase review will, by catching
defects early, save the (typically far greater)
downstream cost of repairing them. These calculations
take into account:
• The “unit” cost of reworking (repairing) a defect,
• A “multiplication” factor capturing the escalation

of expense of rework/repair of defects the later
they are left (e.g., the oft-reported phenomenon
that the cost of correcting a software requirements
bug escalates through the development lifecycle).

• The “amount” of defects to be reworked. This is
proportional to the prevalence of defects, and the

fraction of them that the measure detects.
Prevalence depends on how likely those defects
were in the first place (e.g., less so if high-quality
parts were utilized), and the net effect of other
detection measures that have already taken place.

3.3 Generation, visualization and selection

Our highly integrated model now contains a large

quantity of design and development information.
Furthermore, this information includes choices (our so-
called “quantum model”). These choices give rise to
vastly many permutations of developments, and
designs they yield. It would be infeasible to generate
them all. Instead, we use heuristic search to explore
favored regions of the design space.

This exploratory approach is widely used for design
optimization of many forms. The community
represented by this conference may be familiar with
Sutcliffe’s use of evolutionary computing techniques
applied to selecting components in socio-technical
system designs [8]. At the heart of these approaches is
a “generate-evaluate-decide” cycle. Somehow, a set of
choices are made that yield a candidate design. This is
then evaluated to yield the measures of interest (e.g.,
cost, performance). That evaluation, together with the
history of previous such design evaluations, is then
used to determine the next set of decisions, and so on.

We use “simulated annealing” to guide the
exploration towards the more optimal regions of the
tradespace. We also provide a convenient interface
through which the users can manually make their own
selection decisions.

Once exploration is underway, cogent visualization
is highly effective as a means for allowing skilled
designers to comprehend the rich tradespace. We have
experimented with a number of visualization
capabilities. One is the ATSV tool [3], which includes
the capability to utilize 3 spatial dimensions, plus other
visual cues such as color, size, orientation and
“glyphs”, and dynamic mechanisms of filtering and
highlighting. Taken together, these give us the means
to scrutinize multi-dimensional portrayals of designs’
characteristics. Our DDP tool has several
(comparatively modest) visualization capabilities for
study of the model of development and design. Finally,
CORE can export schedule information to tools such as
Microsoft Project®, whose forms of presentation are
familiar to a wide audience.

The purpose of all of these is to inform designers of
the tradespace of available options, and its makeup.
They can use this information to help select their
preferred designs, to explore “what-if” scenarios to
(perhaps) motivate revising requirements (e.g., “what if

we had 10% more budget?), and to explore sensitivities
of designs to the information on which they are based.

4. Demonstration

In this section we present fragments from an
example we ran through our prototype. Since we work
to help NASA, our example models a space mission
design. Nevertheless, its salient aspects as regards
requirements engineering and design are common to
many terrestrial systems: cost, schedule and other
resource limitations constrain the development options;
the system’s intended operation takes the form of a
sequence of steps, with possible failures along the way;
multiple measures characterize the performance of the
system.

We encoded within the systems engineering tool
some reference information, of institutional processes
(on the makeup and sequencing of development steps
for systems and subsystems) and the relevant
capabilities of a few standard subsystems. We also
encoded within the systems engineering tool the
mission-specific information – a space mission that
would go from the earth to the moon, gather some
moon rocks and perform some science experiments
there, and return to earth. We embedded choices within
both forms of information – e.g., in the reference
information, choices of whether to perform certain
optional reviews, tests, etc.; in the mission-specific
information, choices of make vs. buy decisions for
subsystems, and choices of component parts of
different quality levels. We used our code to generate
the “quantum schedule” that represents these choices.

This representation is transferred to our DDP tool,
which is used to compute the following measures of a
given selection of choices:
• Total development cost
• Elapsed time from start to finish of development

(determined by the development’s critical path)
• Likelihoods of classes of scenarios (e.g., aborted

missions)
• Expected values for:

o science data transmitted back to earth, and
o lunar rock mass gathered and returned to earth.

DDP has several built-in visualization capabilities that
help reveal the detailed makeup of a design’s
contribution to these measures.

Figure 1 – DDP-generated Gantt chart
An example of a Gantt chart generated by DDP for

one of the possible development plans is shown in
Figure 1. The rectangles represent tasks, with each
rectangle’s length proportional to the task duration.
Rectangle fillings distinguish three kinds of tasks:
• grey = standard development activities
• hollow = activities that potentially detect defects
• black = rework/repair of detected defects

Note the strikingly long black rectangle extending
towards the right of the figure, indicating a long-
duration activity to repair defects. It is on the
schedule’s critical path, and so might motivate the
designer to seek earlier-lifecycle ways to reduce the
likelihood of those defects, to decrease the duration of
that repair, and therefore decrease the overall
development duration.

Even in our simple demonstration example there are
almost 200 distinct choices. The size of the search
space this represents is approaching 2200, or roughly
1060. We use a “generate-evaluate-decide” cycle to
yield interesting points in this space.

To help designers scrutinize this space, we use the
visualization capabilities of the ATSV tool [3]. Figure
2 shows a relatively simple example of this. The three
axes have been set to portray:
• Cost (axis towards the lower left)
• Duration (axis towards the right)
• Total benefit (axis towards the top)

Total benefit is an aggregate of our model’s two
measures of value, the proportion of mass of rocks
returned to Earth out of the maximum possible such,
combined with the proportion of science instrument
data transmitted back to Earth out of the maximum
possible such. Should we wish to do so, we could
display these in separate axes.

Each tiny cube in the display represents a different
development plan and resulting design. The two sizes
of icons distinguish whether or not each plan includes a
particular optional activity:
• Small = design omits that activity
• Large = design includes that activity

The particular activity is an optional design peer
review for one of the subsystems. From the figure it is
discernable that the large points (designs that include
the activity) tend to lead to lower overall durations.
This indicates that the activity catches problems early,
and so more than pays for itself later.

Figure 2 - Using ATSV to reveal an option with

a dramatic effect on duration
The point is that ATSV makes it easy to quickly

step through the options, and see patterns such as this.
More generally, ATSV is adept at presenting the
overall shape and structure of the search space, a very
useful capability for our purposes.

5. Implications, challenges, opportunities

Our vision extends the practicality of model-based
engineering to straddle the development / design gulf,
and so makes possible the quantitative treatment of
requirements over this entire continuum. Its generation
of development plans from a combination of reference
information and project-specific details helps reduce
the modeling effort, and ensures that the plans are
correct by construction with respect to that reference
information (e.g., institutional practices).

Thus institutions will be more able to capitalize on
their design expertise knowledge: individual corporate
processes, gate products and various hard-learned sets
of rules of thumb, which up until now have been
encoded in documentation for human consumption,
will become reference knowledge on tap for
widespread application and tailoring. Systems
engineers will be liberated from low-level consistency
checking of plans against standards. Their focus will
instead be on getting the coupled design-development
right. This will raise the level of design discourse:
engineers’ time will be utilized to rapidly investigate
design spaces, not just point designs.

Rather than focusing solely on the accuracy of the
produced plans and designs, companies will be focused
on the accuracy/validity of the input data from which

they are generated. Reviews will be able to focus on
the source of the various inputs and on more subtle,
complex interactions that may have been inadequately
modeled or represented.

There are, however, some significant challenges
that lie ahead if our vision is to be realized. Many of
the challenges involve getting users to adopt the
approach, as there are some non-recurring expenses
which must be ‘paid’ up front. In particular, the
reference information will take time to gather,
formalize, and render consistent.

Our prototype is sufficient to illustrate the concept,
but will quickly run into problems of scale if used as-
is. In the area of risk-based calculation, we must
leverage the work that takes place in the reliability and
risk assessment community to address large-scale
problems. Even in our “simple” example the plethora
of choices, their cross-coupling to risks, etc., combine
make it difficult to grasp why things happen, and why
the tradespace takes the form it does. This is somewhat
reminiscent of program debugging – why does this
behavior have these characteristics? We believe there
is much to be done with reasoning and visualization to
reveal not only the tradespace, but also the factors that
shape it.

An area in which our approach is somewhat weak is
its treatment of problem decomposition (model
refinement). Goal-oriented requirements engineering
addresses this head-on. We note the trend towards
coupling such work with executable models, e.g., [9],
and with quantitative reasoning, e.g., [10]. We seem to
be approaching this same problem from the opposite
direction. Some blend of these approaches would seem
appropriate.

6. Acknowledgments

The research described in this paper was carried out
at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration and funded
through NASA’s Exploration Systems Mission
Directorate. Reference herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not
constitute or imply its endorsement by the United
States Government or the Jet Propulsion Laboratory,
California Institute of Technology.

We especially thank Matt Brinza for his
contribution to an early software prototype of these
ideas, Mike Yukish and his group for use of their
ATSV tool, and Profs. Tim Menzies and James Kiper
for many influential conversations. We are grateful for
the ongoing support and guidance of this effort

provided by Steve Prusha, Steve Wall and Freddie
Douglas.

7. References

[1] C-L. Hwang, and A.S. Masud, 1979, “Multiple Objective
Decision Making - Methods and Applications”, Lecture
Notes in Economics and Mathematical Systems No. 164,
Springer-Verlag, 1979.

[2] R. Balling, “Design by Shopping: A New Paradigm,”
Proceedings of the Third World Congress of Structural and
Multidisciplinary Optimization (WCMSO-3), Buffalo, NY.,
May 1999, pp. 295-297.

[3] G. Stump, M. Yukish, T.W. Simpson, and E.N. Harris,
“Design Space Visualization and its Application to a Design
by Shopping Paradigm”, Proc. DETC’03 ASME Design
Engineering Technical Conferences and Computers and
Information In Engineering Conference, Chicago, Sep 2003.

[4] M.S. Feather, and S.L. Cornford “Quantitative risk-based
requirements reasoning”, Requirements Engineering
(Springer), 8(4), 2003, pp. 248-265.

[5] S.L. Cornford, M.S. Feather, and J.S. Jenkins,
“Intertwining Risk Insights and Design Decisions”,
Proceedings of the 8th International Conference on
Probabilistic Safety Assessment and Management, Paper
PSAM-0193, New Orleans, May 2006.

[6] V.C. Cortellessa, K. Goseva-Popstojanova, K.
Appukkutty, A.R. Guedem, A. Hassan, R. Elnaggar, W.
Abdelmoez, and H.H. Ammar, “Model-Based Performance
Risk Analysis”, IEEE Transactions on Software Engineering,
31(1), Jan 2005, pp. 3-20.

[7] R.L. Dillon, M. E. Paté-Cornell, and S.D. Guikema,
“Optimal Use of Budget Reserves to Minimize Technical and
Management Failure Risks During Complex Project
Development”, IEEE Transactions on Engineering
Management, 52(3), Aug 2005, pp. 382-395.

[8] A. Sutcliffe, W-C. Chang, and R. Neville, “Evolutionary
Requirements Analysis”, Proc. 11th IEEE International
Requirements Engineering Conference, Monterey Bay, Sep
2003, pp. 264-273.

[9] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri,
and P. Traverso, “Specifying and analyzing early
requirements in Tropos”, Requirements Engineering 9(2),
May 2004, pp. 132-150.

[10] E. Letier, and A. van Lamsweerde, “Reasoning about
Partial Goal Satisfaction for Requirements and Design
Engineering”, Proc., ACM/SIGSOFT 2004/FSE-12, 2004.

